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Abstract

We give a short introduction to wedgelet approximations, and de-
scribe some of the features of the implementation available at the website
www.wedgelets.de. Here we only give a short account aiming to provide
a first understanding of the algorithm and its features, and refer to [1, 2]
for details.

Wedgelet approximations

Wedgelet approximations were introduced by Donoho [1], as a means to effi-
ciently approximate piecewise constant images. Generally speaking, these ap-
proximations are obtained by partitioning the image domain adaptively into
disjoint sets, followed by computing an approximation of the image on each of
these sets. Optimal approximations are defined by means of a certain functional
weighing approximation error against complexity of the decomposition. The op-
timization can be imagined as a game of puzzle: The aim is to approximate the
image by putting together a number of pieces from a fixed set, possibly using a
minimal number of pieces.

As can be imagined, the efficient computation of such an optimal approx-
imation is a critical issue, depending on the particular class of partitions un-
der considerations. Donoho proposed to use wedges, and to study the asso-
ciated wedgelet approximations. For the sake of notational convenience, we
fix that images are understood as elements of the function space RI , where
I = {0, . . . , 2J − 1} × {0, . . . , 2J − 1}. Other image sizes can be treated by
suitable adaptation, at the cost of a more complicated notation.

The wedgelet approach can be described by a two-step procedure:

1. Decompose the image domain I into a disjoint union of wedge-shaped sets,
I =

⋃
w∈P w.

2. On each set w ∈ P, approximate the image by a constant.
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Here the w are required to be elements of a fixed set W of wedges. A wedgelet
approximation of an image f associated to the regularization parameter γ is by
definition a minimizer of the functional

Hγ,f (P, fP) = γ|P|+ ‖f − fP‖22 . (1)

Here fP is a function which is constant on each wedge w ∈ P, and ‖ · ‖2 denotes
the `2-norm on RI ,

‖g‖22 =
∑
x∈I

|g(x)|2 .

The regularization parameter γ can be interpreted as a scale: As γ ranges from
0 to ∞, the minimizer f̂γ of (1) runs through a stack of images, starting from
the data (for γ = 0) to a constant image (for γ = ∞).

A minimizer (P̂γ , f̂γ) of (1) can be viewed as an optimal approximation to
f with a prescribed complexity: If N = |P̂γ |, let XN denote the set of images
in RI which are constant on a partition of I into at most N wedges. Then f̂γ

is an element of XN with minimal `2-distance to f .
A further useful observation is that since we consider constant approxima-

tion, f̂γ is easily obtained from the optimal partition P̂γ by computing mean
values of f over the elements of w ∈ P. Hence the minimization procedure boils
down to finding the optimal partition.

This allows yet another interpretation of a minimizer (P̂γ , f̂γ): Let ε =
‖f − f̂γ‖2. Then, among all wedge partitions incurring an approximation error
of at most ε, P̂γ is the one with the smallest number of elements.

Hence, a minimization result of (1) can either be viewed as optimal approx-
imation with (at most) a fixed number N(γ) of pieces, or as partition with a
minimal number of pieces among those partitions that incur (at most) a fixed
approximation error ε(γ).

Clearly the properties of this scheme depend on the precise definition of the
set W of admissible wedges. One possible choice could be to take the set Q of
dyadic squares contained in I,

Q = {[2jk, 2j(k + 1)[×[2jm, 2j(m + 1)[ : 0 ≤ j ≤ J , 0 ≤ k, m < 2J−j} .

Strictly speaking, the ”wedges” appearing in this set do not deserve the name,
and approximations based on dyadic squares have been studied for quite some
time, usually under the name of ”quadtree decompositions”. The wedgelet con-
struction proposed by Donoho can be seen as a refinement of this: Then elements
of W are obtained by splitting an element q ∈ Q along a suitable straight line,
yielding q = w1 ∪w2. For each dyadic square the lines are prescribed according
to a suitable scheme (more on that in the next section). Figure 1 shows exam-
ples of optimal approximations using wedges and dyadic squares, with the same
number of pieces. Since coding wedges requires more information per piece, the
comparison is not exactly fair; but the images manage to convey the motivation
behind the construction of wedgelets, which do a much better job at resolving
diagonal edges.
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With these definitions, an algorithm for the minimization of (1) can be
broken down into the following two steps:

1. Local minimization: For each dyadic square, determine the wedge split
q = w1∪w2 which yields the minimal local approximation error ‖fp−f̂p‖22.
Here fp is the restriction of f to p, and f̂p is the function that assigns each
element of wi the mean value of f on wi. Store the optimal split and
associated approximation error.

2. Global minimization: Given γ, compute the optimal wedgelet decom-
position P from the data stored in the first step.

This way of organizing the minimization procedure is based on the following
observations. We refer to [1, 2] for more details.

1. From a computational point of view, local minimization dominates the
algorithm performance. We are required to compute mean values and `2-
errors for a large number of wedges, and a naive approach to this problem
results in huge computation times. An effective solution of this problem
is one of the main contributions of our implementation.

2. In view of the previous remarks, it is important to note that the local
minimization does not depend on the parameter γ. The quadtree structure
associated to dyadic squares allows a fast implementation of the global
minimization step, yielding arbitrary access to the minimizers of (1) almost
in real time.

Our implementation

The algorithms available on this website depend on a technique that allows a
convenient control of the angular resolution of the wedgelet scheme. Given an
arbitrary angle θ, we consider a decomposition of the image domain into parallel
digitized lines all having angle θ with the horizontal axis. Then the (costly) first
step of the minimization procedure is performed for all wedges arising by a split
along one of these lines, using lookuptables. Angles can be treated consecutively,
which keeps the allocation efforts within reasonable bounds. The number of
angles enters linearly into the computation time. Thus our implementation
allows an arbitrary transition

Let us quickly give an overview of the features, as they are accessible in the
panel. The main purpose of the panel is to provide a platform for the convenient
experimentation with wedgelets, with a rapid and convenient visualization of
the results. We now give a short description of the panel; confer the page
http://www.antsinfields.de/wedgelet/screenshots.html for a screenshot.

• Section ”open pgm (ascii) file”: This button has the obvious function.
Currently we only support pgm (ascii) format; freely available software
such as IrfanView (Windows) or GIMP (Linux) can be used for the con-
version from other file formats.
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• The ”create new tree” button allocates the necessary memory for the
following steps.

• The buttons in the ”add model” section allow to perform a local minimiza-
tion for the loaded image. Note that there is an array of such buttons. Here
the different rows correspond to different choices of the underlying sets of
wedges, in increasing order of complexity: ”dyadic rectmodel” corresponds
to taking dyadic squares as wedges. ”wedge model explicit” allows the def-
inition of angles in a direct manner; ”wedge model” uses an incremental
way of prescribing the angles. The ”adaptive wedge model” row refers to
a set of admissible angles that depends on the size of the dyadic interval.
Clearly a dyadic square of 2j × 2j can only resolve O(2j) angles, and the
”adaptive wedge model” scheme reflects this observation. Thus we obtain
a considerably better angular resolution than in the ”wedge model”, at a
comparable computational cost.

The columns of the array of buttons correspond to different ways of locally
approximating the image. In addition to piecewise constant approxima-
tion of the image, we have also implemented piecewise affine and piecewise
quadratic approximation. The generalization to piecewise linear approxi-
mation was already suggested by Willett and Nowak [3], who coined the
term ”platelets” for the resulting system of local approximants. Figure 2
below shows a comparison of locally constant vs. locally linear approxi-
mation.

Since increase in model complexity necessarily implies a better approxi-
mation behaviour, the functional that is minimized in the more general
setting is given by

Hγ,f (P, fP) = γ#(Parameters ) + ‖f − fP‖22 , (2)

where #(Parameters ) is the number of real parameters needed to code
the different local approximations, i.e., 1 for constant, 3 for affine, and
6 for quadratic approximation. The price to pay is an obvious increase
in computational complexity; in the quadratic case there are also some
numerical stability issues to consider (see [2]). On the other hand, for
images containing smooth color gradients, the use of higher order models
allows a better approximation, as can be seen in Figure 2 below.

An important additional feature of the implementation is that the different
schemes can be used simultaneously. Note that the functional (2) allows
to treat varying models within an image. In our implementation, the
result of each additional local minimization step is stored separately, and
considered later on in the global minimization procedure.

• The minimization section allows to fix the parameter γ. Pressing a but-
ton from the ”open output” section then allows to view the result. The
displayed minimization result is automatically updated after a new choice
of γ. The parameter can be prescribed numerically or via sliders. Moving
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the ”heavy drag slider” around while pressing the left mouse button allows
to view the family of minimizers (P̂γ , f̂γ) for different γ essentially in real
time.

• The ”open output” section allows the display of the minimization results.
The ”show array” button displays f̂γ , the ”show tree” button displays the
partition P̂γ , and ”show both” superimposes P̂γ onto f̂γ .

• The ”report” button allows to view computation times and properties
of the most recently computed global minimization step, such as psnr (in
comparison to the original image) and number of active pieces. The button
”remove models” removes the results of the local minimization steps, to
allow starting over with a new model.

Websites with related contents and implementa-
tions

We are aware of the following websites containing implementations and litera-
ture concerned with wedgelet approximation, or more generally, with geometric
multiscale image approximation.

• The matlab toolbox BeamLab200 was developed by Donoho and his col-
laborators; it is available at http://www-stat.stanford.edu/∼beamlab/ .
The toolbox contains an implementation of a wedgelet approximation algo-
rithm. In addition to that BeamLab200 contains a host of other algorithms
performing ridgelet, curvelet and beamlet transforms. Also, preprint ver-
sion of related papers can be downloaded.

• The website http://www-ece.rice.edu/∼willett/Research/software.html con-
tains matlab implementations of greedy, coarse-to-fine wedgelet and platelet
approximation algorithms, mostly in a denoising context.

• A website containing contourlet transforms, a digital implementation of
the curvelet system, can be found under http://www.ifp.uiuc.edu/∼minhdo/software/
.
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Figure 1: IBB North. 640 × 480 (a) Original image, (b) approximation using
1000 dyadic squares, and (c) approximation using 1000 wedges.
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Figure 2: IBB North. 640 × 480 (a) Original image, (b) (b) locally constant
approximation using 1000 wedges (c) locally affine approximation using 1000
parameters.
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